
Citation: Schiff, K.; Griffith, J.; Steele,

J.; Zimmer-Faust, A. Dry and Wet

Weather Survey for Human Fecal

Sources in the San Diego River

Watershed. Water 2023, 15, 2239.

https://doi.org/10.3390/

w15122239

Academic Editors: Anas Ghadouani

and Rui Cunha Marques

Received: 18 April 2023

Revised: 26 May 2023

Accepted: 31 May 2023

Published: 14 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Dry and Wet Weather Survey for Human Fecal Sources in the
San Diego River Watershed
Kenneth Schiff *, John Griffith, Joshua Steele and Amity Zimmer-Faust †

Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA; johng@sccwrp.org (J.G.);
joshuas@sccwrp.org (J.S.)
* Correspondence: kens@sccwrp.org
† Current address: The Nature Conservancy, Sacramento, CA 95811, USA.

Abstract: State and federal agencies regulate fecal indicator bacteria (FIB), such as E. coli or Entero-
coccus, in order to manage public health risks at swimming beaches. Despite these goals, watershed
managers are challenged in terms of how to best clean up sources of FIB because concentrations
frequently exceed water quality objectives, and sources—both human and nonhuman sources of
FIB—appear to be everywhere. Since most nonhuman fecal sources represent substantially lower
public health risks than human sources do, this study utilizes the human fecal source marker HF183
to better define watershed managers’ riskiest sites and times in order to prioritize remediation actions.
A total of 117 samples were collected and analyzed for both FIB and HF183 from 26 sites during
multiple sampling campaigns between 2019 and 2021 along the mainstem in addition to major
tributaries in a highly urbanized watershed. The results indicated that the vast majority of samples
(96%) quantified HF183 during wet weather, ranging from 99 to 44,768 gene copies/100 mL. Similar
to HF183, the FIB results exceeded water quality objectives for 100% of the samples in wet weather;
however, HF183 was rarely quantified in dry weather, with 3 of 72 samples (4%) exceeding 500 gene
copies/100 mL, while two-thirds of samples (67%) exceeded FIB water quality objectives during dry
weather. Where HF183 was detected in dry weather, isolated and unpredictable events explained
human fecal pollution. It is more challenging in wet weather to identify and quantify the source(s) of
human fecal pollution.

Keywords: urban runoff; bacteria; public health

1. Introduction

Water quality objectives (WQOs) for fecal indicator bacteria (FIB), such as total col-
iforms, fecal coliform, E. coli, and/or Enterococcus, have been established for many years [1].
These fecal indicator bacteria are highly abundant in human fecal waste, such as sewage,
and their associated WQOs are regulatory-based thresholds that are routinely utilized
to ensure that waters remain safe for swimming. These well known and long-standing
WQOs are based on epidemiological studies on beachgoers exposed at beaches subjected to
human sources of fecal pollution [2,3]. Increasing levels of FIB were associated with highly
credible gastrointestinal illness, among other symptoms, and were especially significant in
children [4–6].

The challenge in terms of implementing WQOs in urban watersheds is that FIB
are not human-specific [7–9]. Applying WQOs to waterbodies polluted by nonhuman
fecal sources may lead to the overestimating of human health risks because most warm-
blooded, nonhuman sources contain FIB, but have a lower risk of illness than human
sources do [10]. Ultimately, the levels and pathogenicity of human pathogens may not
be as high in nonhuman sources, such as dogs, horses, or birds, as they are in human
sources, such as raw sewage [11]. Compounding this challenge is the fact that FIB
exceedances of WQOs are widespread, especially in urban watersheds. For example, the
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state of California—a state with the highest number of annual beachgoers in the United
States [12]—has over 300 impaired waterbodies for FIB (https://www.waterboards.ca.
gov/losangeles/water_issues/programs/303d/, accessed on 1 May 2023) that require
total maximum daily loads (TMDLs). Cost estimates for complying with the bacteria
TMDL in just one county of California—San Diego County, in the southwesternmost
portion of the state—are estimated to be more than USD 1 billion [13].

Watershed managers are looking for tools that can distinguish human from nonhuman
sources of FIB to help prioritize which waterbodies or times of year have the greatest
human health risks. The most common tool used for identifying human sources of fecal
pollution is the genetic marker HF183, found in the bacterium Bacteroides [14–16]. The
HF183 human genetic marker is both sensitive and specific for human fecal pollution.
Bacteroides is an obligate anaerobe that lives nearly exclusively in the human gut, ensuring
that the environmental detection of HF183 is “fresh” because decay rates are rapid [17].
When faced with an overwhelming number of clean-up actions, identifying sites with
the greatest levels of HF183 allows watershed managers to prioritize which waterbodies
require the most urgent attention and when.

The goal of this study is to use the human fecal marker HF183 for identifying when
and where watershed managers need to prioritize remediation, as well as where and when
water quality improvements are less urgent. In this case study, we use a highly urban
watershed in the arid west of the United States with a separate sanitary sewer system
from a storm drain system, as well as the presence of additional human nonpoint sources,
including septic systems and people experiencing homelessness.

2. Materials and Methods

This study was conducted in the lower San Diego River Watershed (Figure 1). The
watershed is 419.1 km2 with 55 percent urban development; the dominant urban land use
is residential. The watershed has an estimated 1911 km of sanitary sewer, 140,000 private
laterals, 1692 septic systems, and 350 people experiencing homelessness residing within
the river corridor.

The climate in San Diego is semi-arid, averaging approximately 26 cm of precipitation
annually; the wettest months are January and February. The dry season extends from April
to October.

There were 13 primary and 13 secondary sites, for a total of 26 sampling sites in this
study (Figure 1, Supplementary Table S1). The 13 primary sites were located along the
mainstem and at the end of major tributaries to the San Diego River. Each of these sites
represent major sections of the river system, enabling the spatial stratification of potential
sources. The 13 secondary sites were located upstream on the major tributaries and at the
end of minor tributaries to provide enhanced spatial resolution.

There were three dry weather sampling events and three wet weather sampling events
for this study. The three dry weather events were collected at the end of the summer
(the driest part of the year), after the first storm of the year (which may wash off easily
mobilized dry weather inputs), and at the end of the wet season (when groundwater may
be contributing fecal pollution to the system). All dry weather samples were collected
> 72 h after any measurable rainfall. Grab samples were collected at each primary and
secondary site via the use of precleaned, sterilized bottles.

The three wet weather events were only collected at primary sites across a range of
storm sizes during the 2020–2021 and 2021–2022 wet seasons. Storm precipitation ranged
from 1.7 to 4.6 cm (0.68 to 1.8 inches) at the long-term rain gauge located at the San Diego
International Airport.

All of the dry and wet weather samples were collected as short-term grabs in 1000 mL
sterilized polyethylene or polypropylene bottles that were sample-rinsed prior to collection.
Field blanks were collected for at least 10% of the samples. Samples were chilled on ice and
delivered to the laboratory within 6 h of collection.

https://www.waterboards.ca.gov/losangeles/water_issues/programs/303d/
https://www.waterboards.ca.gov/losangeles/water_issues/programs/303d/
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Figure 1. Map of the lower San Diego River with sampling sites. 
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in replicate, using at least 20,000 droplets for an absolute quantification of HF183.  

Figure 1. Map of the lower San Diego River with sampling sites.

2.1. Laboratory Analysis

Once delivered to the laboratory, 100 mL portions of the water samples were filtered
through 0.4-micron polycarbonate or 0.45-micron mixed cellulose ester membranes to
collect bacteria, then flash frozen in liquid nitrogen and stored at −80 ◦C prior to
DNA extraction.

Other portions of the water samples were used to quantify FIB. Cultivable Entero-
coccus, total coliforms, and E. coli were measured via the use of the Enterolert as well as
Colilert methods and a Quantitray 2000™ system (IDEXX, Westbrook, ME, USA), accord-
ing to the manufacturer’s instructions, with three dilutions covering a 100,000-fold range
of concentration.

Frozen filters were processed in batches using commercially available DNA extraction
kits (GeneRite RW-01 kit, GeneRite, NJ, USA). DNA extraction followed the methods
developed by Cao et al. [17] and Steele et al. [18]. Briefly, frozen filters were placed into
sterile 2 mL plastic tubes preloaded with glass beads. A lysis buffer was added and the
tubes were placed on a BioSpec Mini-Beadbeater-16 (BioSpec Products Inc., Bartlesville,
OK, USA) at maximum speed for 2 min. The extraction then proceeded according to the
manufacturer’s instructions. DNA was eluted from the spin column in 100 µL of an elution
buffer. Aliquots of eluted sample DNA were stored at −80 ◦C until they were analyzed by
droplet digital PCR.

Negative extraction controls (NECs) containing only a lysis buffer in addition to a
lysis buffer and control DNA (e.g., halophile or salmon testes DNA) were processed for
every extraction in the same manner as the samples.

Human-associated Bacteroidales (HF183) were measured via the use of a droplet digital
PCR assay following previously published protocols [17,18]. Samples were measured in
replicate, using at least 20,000 droplets for an absolute quantification of HF183.
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Field and equipment blanks were 100% nondetectable for FIB and HF183. Filtration
controls were also 100% nondetectable.

2.2. Data Analysis

Data analysis consisted of three steps: (1) characterizing FIB concentrations and
WQO exceedance rates during dry or wet weather in the San Diego River Watershed,
(2) characterizing HF183 concentrations and proposed threshold exceedance rates during
dry or wet weather in the San Diego River Watershed, and (3) correlations between FIB
and HF183 during dry or wet weather. All graphic and data analyses were carried out
through the use of Sigmaplot V12.5. The single-sample WQO for FIB was total coliforms
>10,000 counts/100 mL, E. coli > 400 counts/100 mL, or Enterococcus > 104 counts/100 mL.
A proposed threshold for HF183 has been suggested [19]; however, neither the State of
California nor the US Environmental Protection Agency have legally promulgated a WQO
for HF183. While not an enforceable WQO, HF183 > 500 gene copies/100 mL is intended to
be a health-risk-based threshold comparable to risks from FIB thresholds associated with
human sources.

3. Results

A total of 117 samples were collected during this study: 78 during dry weather
and 39 during wet weather (Supplementary Table S2). All of the collected samples were
successfully analyzed for FIB and HF183. All of the targeted sites had flowing water in wet
weather, regardless of storm size; however, because of the region’s arid climate, between
three and five sites (5–9% of sites) did not have flowing water during dry weather, and
predefined alternate sites were sampled instead (Supplementary Table S3).

All (100%) of the samples collected during wet weather in this study exceeded the WQO
for Enterococcus (Figure 2A). Concentrations ranged from 228 to 198,630 MPN/100 mL. While
less frequently than for wet weather, the majority of the samples (58%) exceeded the WQO for
Enterococcus in dry weather. The concentration range for Enterococcus was also smaller in dry
weather than wet weather, from < 10 to 15,650 MPN/100 mL. Because Enterococcus exceeded
the WQO more frequently than total coliforms or E. coli (Supplementary Tables S2 and S3), the
remainder of the results for FIB will focus on Enterococcus.

In contrast to Enterococcus, there was a large difference in HF183 threshold exceedances
between wet weather and dry weather (Figure 2). Two-thirds (67%) of the HF183 samples
exceeded the 500 gene copies/100 mL threshold in wet weather, whereas 3 of 78 (4%)
samples exceeded 500 gene copies/100 mL in dry weather. Concentrations ranged from
nondetectable to 4840 gene copies/100 mL in dry weather. In comparison, HF183 concen-
trations ranged from nondetectable to 44,988 gene copies/100 mL in wet weather. These
results infer that human fecal sources are infrequently present in dry weather, although
Enterococcus exceeds WQOs, suggesting non-human sources predominate in dry weather.

The concentrations of HF183 by site during each storm event did not show any
predictable spatial pattern (Figure 3). No single site consistently had the greatest or lowest
HF 183 concentrations during wet weather. Instead, concentrations spiked at different
sites during individual events. Two sites showed some consistency: Alvarado Creek
had consistently modest concentrations, and Mission Trails had a consistently decreased
concentration of HF183. Regardless of spatial patterns, HF183 was routinely detected at all
sites with seemingly stochastic peaks or dips, indicating a systemic wet weather human
fecal source.
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Figure 2. Paired box plots of (A) Enterococcus and (B) HF183 between dry weather and wet weather,
with threshold reference lines. Boxes represent 10, 25, 50, 75, and 90 percentiles, and symbols are in
the outer deciles. Dashed lines represent thresholds, including a single-sample water quality objective
for Enterococcus (104 MPN/100 mL) and a risk-based threshold for HF183 (500 gene copies/100
mL) from the literature. One was added to all of the values for the logarithmic axis. Most of the
Enterococcus samples were above the threshold, while only wet weather HF183 samples were above
the threshold; HF183 dry weather samples were below the threshold.
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Figure 3. HF183 concentrations per site in wet weather. The river flows from right to left. The
threshold is set at 500 gene copies/100 mL. One is added to all values for the logarithmic axis.
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Dry weather, on the other hand, had a very predictable spatial relationship and source-
specific rationale for high HF183 concentrations (Figure 4). HF183 concentrations were
uniformly low to nondetectable in dry weather; however, there were two main spikes
in HF183 concentrations during dry weather. The first spike occurred during sampling
event number three, where the separate sanitary sewage system overflowed and entered a
tributary to the San Diego River (Los Coches Creek). Concentrations of HF183 decreased
flowing downstream in this tributary, due possibly to dilution and/or decay. Interestingly,
follow-up samples were collected at the station nearest the spill three days after the sewage
spill clean-up. This station, which had the greatest HF183 concentrations during the survey,
had decreased to non-detectable concentrations in the follow-up sample.
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The second main spike in HF183 concentrations during dry weather occurred during
sampling events number two and three in a different tributary, Forester Creek. This tribu-
tary has documented encampments of people experiencing homelessness in the tributary
flood control channel. Once again, concentrations decreased flowing downstream from
the encampment.

Correlations between concentrations of Enterococcus and HF183 in wet weather were
statistically significant (log10-transformed, r2 = 0.499, p < 0.001). Despite not knowing
what sources were mixing in the San Diego River during rainstorms, the highest HF183
concentrations occurred when Enterococcus concentrations were highest (Figure 5). In
contrast, after excluding the known human inputs identified during dry weather (see the
previous paragraph), concentrations of Enterococcus and HF183 were not correlated in dry
weather (log10-transformed, r2 = 0.041, p = 0.087). The highest HF183 concentrations in dry
weather did not occur at the highest Enterococcus concentrations, and many of the highest
Enterococcus concentrations had nondetectable HF183 concentrations.
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(A) dry and (B) wet weather. For dry weather, unfilled symbols indicate that known human sources
were present due to a sanitary sewer overflow and homeless encampment, and therefore excluded
from the regression. One is added to all values for the logarithmic axis.

4. Discussion

Watershed managers nationwide struggle with how to meet regulatory WQOs for FIB.
Particularly in wet weather, concentrations of FIB appear high almost everywhere almost
all the time [8,9]. In dry weather, the problem of high FIB levels is especially problematic
because that is when most body contact recreation (i.e., swimming) occurs and the risk of
human health exposure via ingestion is greatest. When human fecal sources are present,
epidemiology studies have repeatedly shown that FIB are predictive of health effects, such
as highly credible gastrointestinal illness [2,3]. In these cases, remedial action should be
taken to protect public health, which researchers have estimated could result in 90 million
illnesses at a cost of USD 2.2–3.7 billion annually across the United States [20].

Quantitative risk assessments (QMRAs) have predicted less risk when human sources
are absent than when human sources are present [10]. Human viruses such as norovirus,
which is transmitted via human fecal sources, are consistently ranked as the most risk-
producing pathogens in water contact recreation. This complicates watershed management
in that not all sites exceeding WQOs for FIB have human sources. Given that a reduction in
FIB to meet WQOs can cost billions of USD for just a single TMDL [13], HF183 provides a
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tool with which to identify human-specific sources, thereby focusing watershed managers
on the most cost-effective solutions that are protective of public health.

In this study, HF183 concentrations were consistently low to nondetectable during dry
weather, even when the majority of samples exceeded Enterococcus WQOs. This situation
is a prime example of the conundrum that watershed managers face. When Enterococcus
concentrations exceeded WQOs and HF183 concentrations were also high in this study, the
human-specific source (a sanitary sewer overflow) was clearly as well as rapidly identified
and remediated. This case study illustrates an example of an effective priority-setting
process that could be utilized by others. HF183 has been used in other watersheds for
source identification purposes over the past decade [21–28].

In order for HF183 to be a truly effective tool, watershed managers—both regula-
tory and regulated agencies—need to agree on a meaningful HF183 threshold. Risk-
based thresholds for HF183 do exist in the literature. Boehm et al. [29] used a QMRA
from surface releases of raw sewage to identify an HF183 threshold of ~4000 gene
copies/100 mL for a risk estimate of 30 illnesses/1000 exposures, a risk level recom-
mended by the US EPA [2,3]. Boehm and Soller [16] updated their HF183 threshold
to ~500 gene copies/100 mL to account for a range of raw sewage HF183 concentra-
tions and decay rates. Soller et al. [11] suggested an HF183 threshold of ~4000 gene
copies/100 mL for a risk estimate of 32 illnesses/1000 exposures based on a QMRA
from wet weather discharges. Regardless, no regulatory thresholds currently exist for
HF183, and this limits the application of HF183 as a priority-setting tool for water-
shed managers. Some regulators may argue that any level of HF183 is not permissible.
For the current project, the most conservative threshold from the literature—500 gene
copies/100 mL—was used as a metric for estimating risk levels of concern to ensure
that the lack of relationships between Enterococcus and HF183 were not a result of an
overinflated threshold.

In contrast to dry weather, wet weather had HF183 exceeding 500 gene copies/100 mL
at almost every site during nearly every storm event sampled. This indicates that consistent
inputs of human fecal sources occur during wet weather and should be a public health concern.
In this instance, HF183 was used as a predictor of human fecal source contributions because
previous research quantified human-specific pathogens, including norovirus, in wet weather
discharges from this watershed [18]. Moreover, there was an increased risk of illness quantified
for surfers immersing during or immediately following rainstorms compared to when these
same surfers immersed during dry weather or did not immerse at all [30].

Based on the widespread quantification of HF183 at levels of concern during wet
weather, watershed managers in the San Diego River have stopped asking “if human fecal
sources are present in wet weather discharges?”, but rather “which human source is present
in wet weather discharges?”. In separate sanitary and storm drain systems, such as the San
Diego River, this is a challenging question to answer since many potential sources exist,
such as sanitary sewer overflows, the subsurface exfiltration of a sanitary sewer system that
surfaces at some point downslope, leaking or overflowing private laterals, nonfunctioning
onsite wastewater treatment systems, and/or insufficient sanitation services for people
experiencing homelessness camping along the river corridor. Quantifying these different
sources during wet weather when they commingle and transport downstream is the next
research challenge for effective watershed management and public health protection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15122239/s1. Table S1: Site name, tributary or mainstem location,
latitude/longitude (NAD 83 datum), percent of total watershed area (total area = 419.1 km2), and site
description. Table S2: Site name and concentration of Enterococcus, E. coli, Total Coliforms, and HF183
from Dry Weather Survey Events 1–3. Table S3: Site name and concentration of Enterococcus, E. coli, and
Total Coliforms from Wet Weather Survey Events 1–3.
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